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19. Abstract: (Continued)

amelioira mbane locking through both explicit mode decomposition .4

integration; (3) the development of stabilization procedures for ;-'#,.

higher order elements such as the 9-node element which satisfy basic
consistency and the patch test.
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INTRODUCTION

The purpose of this research was to develop efficient and accurate finite

elements for the large displacement, transient analysis of shells. It was

apparent from the beginning of this research program that in order to achieve

these goals, minimal quadrature rules would have to be developed so that the

fewest possible number of quadrature points would be used in an element. In

the case of the 4-node shell element, minimal quadrature consists a single .. -

quadrature point per element; in the 9-node Lagrange shell element, minimal

quadrature is a 2x2 Gauss quadrature. Compared to full quadrature, reduced

quadrature reduces solution time by 50% to 75% and also enhances the accuracy

of shell elements.

However, minimal quadrature elements have one important shortcoming: they

possess spurious singular modes, often known as hourglass modes, which can

completely destroy a solution. Therefore, procedures were developed for

controlling these spurious modes. These methods have been called y-methods

and they involve a special projection so that the consistency, that is the

ability to meet the patch test, of the finite element is not lost. We have

been able to apply these methods to both linear and nonlinear problems as -"-

evidenced by the results reported in Belytschko, Tsay and Lin (1981). Some of

the nonlinear results obtained in that paper are reviewed in Appendix C of

this report. It can be seen from these results, that the method has indeed

become effective in providing accurate nonlinear solutions. The method has "I.

already been incorporated in the general purpose program ABAQUS.

In addition to the basic development of the stabilization procedure, the

major findings of this project are: (1) the identification of the membrane

locking phenomenon which impedes the convergence of any fully integrated

curved element; (2) the development of general methods for ameliorating

-~A .2 -°° I°,
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membrane locking through both explicit mode decomposition projections and

through Implicit projections by means of reduced integration; (3) the

development of stabilization procedures for higher order elements such as the

9-node element which satisfy basic consistency and the patch test.

The motivation for the research into the curved elements can be

understood by examining Figure la. These results were obtained with the

widely-used, 9-node Lagrange C"-shell element. As can be seen, it is ..

difficult to choose a quadrature scheme for the 9-node element which is both

accurate and stable. For full integration (3x3) or selective reduced .

integration, even a relatively fine mesh such as this results in errors which " .

are unacceptably large. On the other hand, uniform reduced integration, which

in this case is 2x2 on all terms, provides good accuracy but results in

singularity of the assembled stiffness for some support conditions. This

limitation of uniform reduced integration probably makes it unacceptable for

general purpose programs, but its superior accuracy is attractive.

The relatively poor performance of the fully-integrated (3x3) 9-node

Lagrange element in the simple arch problem is actually a mild case of

misbehavior. As shown in Fig. 1b, for more complex, deeply-curved shells, the -.

behavior of both the 3x3 and selective-reduced integration schemes can be

simply abysmal. In this case, 1445 degrees of freedom for a quadrant of a

shell yielded results which were only 26% of the exact solution.
* .. -,4* *%

A similar impasse has evolved in the development of 3-node, 18 degree-of-

freedom triangular shell elements. Essentially, prior to this research no

element of this genre existed which could solve a wide class of shell problems

with acceptable accuracy. While certain elements performed well for specific

problems, invariably when tested on a set of demanding shell test problems,

their performance is unsatisfactory.
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Two of the phenomena which have been identified as the culprits in poor

element performance are shear and membrane locking. Shear locking was first

identified by Doherty et al. (1969) and Ziekiewicz et al. (1971), who at the

same time proposed the daring remedy of reduced integration. Reduced

integration, and its offspring, selective reduced integration (SRI), proved to

be very successful in ameliorating the effects of shear locking in the

analysis of plates and shells.

The term "membrane locking" was coined by Stolarski and Belytschko (1981)

(see also Stolarski and Belytschko (1982)), who showed that it is related to

an inadequate representation of inextensional deformation. The poor

performance of many elements in analyzing the response of shells where

inextensional modes of deformation are important has been noted by numerous

authors, including Ashwell and Sabir (1971), Sabir and Ashwell (1971), Morley

(1972), Sabir and Lock (1973), Fried (1973) and Dawe (1974). Problems related

to inextensional bending were also discussed later by Ashwell (1976), Lee and

Pian (1978), Noor and Peters (1981), Kikuchi (1982), Allman (1982), MacNeal

(1982), Morley (1983) Stolarski and Belytschko (1983) and Kikuchi and Aizawa

(1984). Reduced integration is also effective in mitigating membrane locking;

see Parisch (1979) and Stolarski and Belytschko (1983).

However, prior to the work performed in this contract, membrane locking

in complex shell elements was poorly understood and its pervasiveness not

appreciated. Thus many users of degenerated elements did not anticipate its

appearance in those elements, for the idea expressed in Noor and Peters

(1981), that this locking "is a result of inadequate representation of rigid

body modes" was widely held. Yet degenerated isoparametrics, which correctly

incorporate rigid body motion, as first noted by Argyris and Scharpf (1968), L;.:.7

also encounter severe membrane locking.
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This contract has shown that locking can be eliminated by projection

methods. Among these are mixed formulations, in which separate interpolants

are used for the stresses and displacements as in Lee and Pian (1978) and Noor

and Peters (1981), or by mode decomposition methods in which the nodal

displacements are projected so as to minimize parasitic stresses. Examples of

the latter are the Hughes and Tezduyar (1981) quadrilateral plate element and

the Belytschko, et al. (1984c) triangular plate element. A common feature of

all of these methods, mixed formultions, reduced integration and mode

decomposition, is that they can be viewed as stress projections. Stress

projections are methods in which the stresses are projected on a subspace of

stresses. If the stress projection is designed so that parasitic shear

stresses are reduced, then shear locking is mitigated. Similarly, stress

projections that reduce parasitic membrane stresses reduce membrane locking.

The classification of projection methods as developed in this contract is

summarized in Fig. 2. They are classified as (1) implicit projection methods,

such as reduced integration, and (2) explicit projection methods, such as -'.

mixed methods and mode decomposition methods. Mode decomposition projections

are the most explicit of these methoas in that algebraic procedures are used

to remove parasitic stresses. All of the projection methods ameliorate

locking by annihilating parasitic shear and membrane stresses.

The outline of the report is as follows: in Section 1 a simple model

will be used to show the similarity of the causes of shear and membrane

locking and their relationship to parasitic shear and membrane stresses.

Section 2 will then describe how mode-decomposition stress projection methods

can be used to alleviate shear and membrane locking. Se-tion 3 will show that

in mode decomposition projection methods the standard B-matrix is projected

onto the interpolation for the stresses. In Section 3 it is shown that the 9-
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node Lagrange element with 2x2 integration represents a stress projection

which is free of parasitic shear and membrane stresses, and hence free of

membrane and shear locking. This element is rank deficient and requires -

stabilization; a y-stabilization developed in this contract is described in

Appendix A. In Appendix B, a formal equivalence is established between this

element and an exactly integrated mixed method.

In Section 5 a challenging set of tests problems for linear analysis of

shells is desscribed. We have found these problems to be very decisive in

establishing the viability of elements and have called it an obstacle

course. The performance of the new elements developed here and some older -. "

elements on the obstacle course is described in Section 6. It is concluded

that the 9-node element with uniform 2x2 quadrature and the y-stabilization
-W . 5- •%

developed in this contract performs superbly on this set of problems.
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I. SHEAR AND MEMBRANE LOCKING IN CURVED BEAMS

For purposes of examining the causes of shear and membrane locking, we

will consider a curved beam described by a one dimensional version of the

Marguerre shallow shell equations. Although this is one of the less popular

methods for treating curved shells by finite elements, it should be stressed

that the mechanical behavior of elements described by alternative methods such

as degenerate shell theories and classical deep shell theories is identical as

long as the shell element is shallow; the convergence of shallow shell

equations expressed in Cartesian components to deep shell results has been

effectively argued by Idelsohn (1981). Stolarski et al. (1985) have extended

those arguments to degenerated shell theories.

In most practical applications, shell elements are quite shallow because

larger elements would prevent the achievement of satisfactory accuracy. -

Furthermore, locking effects increase with increasing curvature. Thus the

Marguerre theory provides an ideal vehicle for the study of locking in curved I. Z.

elements.

The kinematic relations for the Marguerre beam are given by

C u, x + w°,xwx (.1)

(1.2)

y Wx - (1.3)

Here u and w are the x and y components of the displacement of the midline

and 0 is the rotation of the cross-section and the rigid body motion is
.1%/'

p.
,

"
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°° % ,

removed from w, so that w is the displacement relative to the chord, see

Belytschko and Glaum (1979); w is the initial deflection of the midline from

the chord of the element e, K and y are the membrane strain, curvature and

transverse shear strain, respectively; x is the chord of the element (see Fig.

3) and commas denote differentiation.

The stiffness matrix for an element is obtained in the displacement

method by

fl 2T (1.4)

where d1 is a nodal degree of freedom, f1 the corresponding nodal force and U

the potential energy. For an elastic, isotropic beam the potential energy is

given by

U 1 f (DB2 + DmC + dY 2) d (1.5)

where n is the domain of the element (length L); DB, DM and DS are the '

bending, membrane and shear constants. For an elastic beam of thickness

(depth) d and unit width, Young's modulus E and shear modulus G, these

constants are given by _-

0 1Z Ed3(1.6a)OB  Ed3 (1 ).,,,

0 Ed (1.6b)

0= ,s Gd (1.6c)
A-.-

:...-.

S::'.
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where K is the shear-correction factor. The energies associated with the .. ,

constants DB,' DM and OS are called the bending, membrane and shear strain

energies. Note that for a thin beam, d/L << 1,

D B  D B<< 1 ( << 1 (1.7)

LDM L 0

and the ratios of bending to membrane and bending to shear energy will N

similarly be small if the strains are of equal order.

Shear and membrane locking arises in curved elements because of the

inability of most finite elements to achieve deformed states in which the %

transverse shear strain and membrane strain vanish throughout the element.

Modes of deformation in which shear and membrane stresses vanish play an

- important role in the mechanics of shells. For example, when the moment field

is constant, the transverse shear vanishes. When a shell with a single

nonzero curvature, i.e. a cylindrical shell, is subjected to a state of pure

bending, the membrane strains will vanish. This mode of deformation is called

an inextensional mode of deformation because when the membrane strain

vanishes, all lines in the middle surface of the shell remain constant in

length.

In a curved finite element, inextensional states of deformation are often

not possible. The consequences of this shortcoming are severe when finite

elements are used to analyze a shell which undergoes inextensional bending.

Because of the inequalities which hold for thin beams, (1.7), even a small

membrane strain or transverse shear strain will cause the membrane or shear

energy to overshadow the bending energy. Therefore, if a finite element is

used to model a shell deforming in pure bending, it must be capable of

representing this deformation so that only the bending energy is nonzero. Any

.'. ,.

°.



shear or membrane strains which are developed will absorb a substantial amount

of energy and the element will behave too stiffly, which is known as

locking. The stresses associated with these spurious energies are often N N

called parasitic shear and membrane stresses. Elimination of parasitic shear

and membrane stresses will eliminate locking.

It will now be shown that many of the commonly used elements will exhibit

locking. Substituting Eqs. (1.1) to (1.3) into (1.5) yields

U = LOBD'x . bending energy

SDM(U,x + w w,x  membrane energy (1.8) 41'.~ wp-

Ds(W x - *) 2 ] d * shear energy

If we consider a quadratic, isoparametric element, then the three displacement

components and the initial displacement of the midline from the chord are

given by quadratic, Lagrange shape functions N1  , so

3
[u, w°, ]- w N1(x [, w (1.9)) ,ul "= I Oi (1[

I~i ...

From Eqs. (1.8) and (1.9), it can be seen that if (1) w° * 0 (i.e. if the

shell is curved - see Fig. 3), and (2) if w * 0, then the membrane energy will

be nonzero because u,x is linear and cannot cancel w? W,, which is

quadratic. Since the two conditions of the previous sentence are met in a

state of inextensional bending, this element will exhibit parasitic membrane

stresses and be subject to membrane locking when the stiffness is integrated

accurately; this behavior has been studied by Stolarski and Belytschko (1983).

A 9-node Lagrange shell element will encounter the same difficulties.

d.i,

---d -i," -." op. % " . -" . q . .% - . .% ".' . y % ."'% % ' .• %
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Remark. Note that w is the transverse displacement relative to the chord, so

that it vanishes in rigid body motion; otherwise, nonzero membrane strain

appears in rigid body rotation.

Similarly, because * is a polynomial of higher order than w, in this
element, it is clear from (1.8) that parasitic shear energy will appear.

However, because the order of the polynomial associated with parasitic shear

is lower than that associated with parasitic membrane strains, shear locking

will not be as pervasive or damaging in this element as membrane locking.

Similar locking mechanisms can also be shown to occur for the cubic,

isoparametric Lagrange elements, although the results of Arnold (1981) show

that the locking phenomenon diminishes as the order of the polynomials

0increase. For linear isoparametrics, no membrane locking occurs because w,

vanishes.

In Kirchhoff or C1 elements, only membrane locking occurs since the .

relation w,X - is incorporated in the element, so that the transverse shears

vanish. The membrane locking phenomenon in these elements can be quite
% %

severe. For example, in a standard beam with w° and w interpolated by cubic

Hermite interpolants and u interpolated by linear interpolants, the term

W?' W,x Is a quartic, so it cannot be effectively negated by u,X, which is

only a constant.

Some investigators have advocated using a higher order interpolation for

u than w so that the membrane strain can be eliminated in pure bending modes.

For example, for cubic w° and w, a quintic interpolant for u would enable

spurious membrane strains to be suppressed. However, this remedy introduces

substantial drawbacks in nonlinear analysis, for as shown by Argyris and

Scharpf (1968), unless the shape functions are of the same order as that used

Ad
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to represent the geometry, difficulties arise in large rotations. Rigid body

motion can be adequately represented with shape functions of different order

when a corotational coordinate system is used for the element, as in 4
Belytschko and Hsieh (1973). However, the use of a single corotational system

for an element with high order shape functions may introduce errors because

rigid body rotation then varies substantially within a single element.

In summary, if the orders of the interpolation polynomials for u and w

are such that constant moment states generate shear and membrane energy, that

is parasitic stresses, then locking will result. Removal of the parasitic

stresses is therefore a remedy for locking.

Remark 1.1. Elements which exhibit locking do ultimately converge. Locking

does not imply the absence of convergence, but indicates the inability of the

element to provide reasonable accuracy for coarse and moderate meshes.

Remark 1.2. Many alternative paradigms are available for locking. For

example, Prathap and Bhashyam (1982) explain locking by the appearance of
'kw .*

spurious constraint equations; Park and Flaggs (1984) explain locking through

the appearance of unusually high frequencies in a Fourier analysis of the

discrete equations. All of these approaches provide useful insights into the

causes of locking, but in the setting of projection methods, the viewpoint of

parasitic stresses appears most elucidating.

-'7

*1Vl
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2. MODE DECOMPOSITION PROJECTION METHODS

The purpose of the mode-decomposition projection methods is to project

the nodal displacements so that the parasitic stresses, and hence locking, are

eliminated. In this Section, the application of projections to eliminate

shear and membrane locking in simple beam eTements will be described; the4...

application of projection ti a triangular shell element is also sketched.

The basic idea of mode decomposition projection methods is to define the

bending mode component of any deformation and to ignore the membrane and shear

strain energies associated with the bending modes. Thus the strain energy

expression (1.5) becomes

1 r2 2 2U (D + DM( b + D~( I da (2.1)

B,.4.-:%-.

where eb and Tb are the membrane and shear strains in the bending mode.
b%* Yb,.

As can readily be seen from the above, in a constant moment state, the bending

mode constitutes the total deformation so the membrane and shear energies will

vanish, since in that case e = Lb and y -

This mode decomposition is implemented by defining bending nodal

displacements through a projection

d b P b (2.2)

so that

-'

.1. % -%

-S *. -
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=d (2.3)Yb 
"'

The requirement that the bending parts of the membrane and shear strains,

eb and fb' be those strains that occur in a constant moment state is not

sufficient to identify the projection operator Pb' because it is only one of -,.
the bending modes. For other nodal displacements, it is also necessary to , ,

define the bending mode (or component) of the nodal displacements. Therefore

a more general procedure must be developed.

Let us consider the mode decomposition procedure for shear projection in

CO beam elements. The first step of this procedure is to define a Kirchhoff

mode for any displacement field. A Kirchhoff mode is the displacement

field wK(x) that would occur in a Kirchhoff beam with the curvature field
K \

given by Eq. (1.2); wK (x) is obtained by simply integrating the curvature

twice and then choosing the constant of integration so that the Kirchhoff

mode best fits the nodal displacements of the element.

For example, consider the 2 node, linear w, linear * element in which

w = wi(i {) + w2 { (2.4a)

0 " * (I  - ) 2 {  (2.4b)

In this element, Eqs. (1.2) and (2.4b) yield the following curvature

I
S L (2 - )  

2 1/L (2.5)

and the Kirchhoff modes are given by

,, • . -'.
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K 21 2
wK(x) x + a x (2.6) 0

The constant a1 is selected by

a1 - (2.7)

so that the nodal rotations of the Kirchhoff mode match the total nodal

rotations of the beam .%-,. --

w, (0=) (2.8a)

w(L) 2 (2.8b) %
I._-

This selection is based entirely on physical reasoning; the aim is to insure

that in a constant moment state, such as shown in Fig. 3, the rotations are

entirely associated with the Kirchhoff (i.e. the bending) mode, so that

transverse shear energy vanishes in (2.1). It is not always possible to

satisfy relations such as (2.8) (see for example the development of the

triangular plate in Belytschko, et al. (1984)).

The Klrchhoff mode is then selected as the bending mode, so that the

relation between the total nodal displacements and the bending nodal

displacements follows from (2.6-8) and is given by

r F
%.:

X&"...
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Inextensional line
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Figure 3. Nomenclature for beam element and illustration of an inextensional
bending mode of deformation.
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0 0 1 0 0 2 v

I 0 0 0 0 wI 1,
(2.9 )", ..

w2  L/2 L/2 0 0 w21

A little manipulation of Eqs. (2.1), (2.3) and (1.4) shows that the stiffness

of this element is given by

' " T Td P s BDs Bs d2 P (2.10a)

e -e

where

P =1S P (2.1ob)

where I is a unit matrix; Eqs. (1.1-3) and (2.4) give

B [-, +1, 0, 0] (2.11a)

- U-.= ..t

Bs  1 -i /L, I/L] (2.11b1)"'

An interesting consequence of the fact that P is a projection operator is
-s

that (see Stolarski and Belytschko (1985))

PS EPS (2.12)

so

I*..,
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S T T
Ke =P Df B 0 ds Ps (2 .13a)

T w
, % 

%'

S~ Br 0 S B a P (2 .13b)Es s -s se L

= T B' 0- 8 dQ (2.13c)

e

where

Bss = BsP - 1/2, -1/2, -l/L, +1/L (2.14)
- . - .

The effect of the projection is thus to change the shear strain from a linear

field such as given by the B -matrix of Eq. (2.11b) to the constant field

given by (2.14).

Remark 2.1. It can be seen from (2.13c) and (2.14) that the stiffness matrix

obtained by this procedure is identical to that obtained by reduced/selective

integration by Hughes, et al. (1977).

Remark 2.2. Considerable leeway is available in the choice of the bending

mode. We have chosen to ascribe all of the nodal rotations to the bending

mode, but other choices are acceptable.

Remark 2.3. The linear displacement, linear rotation element is not subject

to membrane locking, since wi, w,x vanishes in (1.8) for that element.

The projection method for membrane locking is similar. In this case, the

aim is to find the membrane strain cb so that in an inextensional mode of

deformation, the membrane energy vanishes in Eq. (2.1). The projection for

the linear-cubic beam element has been developed by Stolarski, et al. (1984a),

.>-:::
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(1984b) and re, atec D a mxed met hoa by Belytschko et al (1985b). The

displacement Ie> a in itial deflection in this element are given by

a -.-

u = u1(1 - u2 . (2.15a)
1.-2

w = * L ( . 2 2 + + 2 L (3 2 2) (2.15b)

wo  * o L(&3 2E2 + + (0 LC ) (2.15c)1 2

N1  N2

Note again that we have used a corotational coordinate system so that the x

axis always connects node 1 to node 2.

The stiffness matrix for this element is obtained by using (1.1-2) in

conjunction with (2.1) which yields

K -b--Bb da + P BDMB d (2.16)

~e ~e " ~m.-'.. -. ',

where
a,".."

Bb LO, -N ,xx' -N2 ,xx] (2.17a)

=T [u 2 . U '  ' w2(x)N (2.17b)
-IM~a~ a' ,

T.

If P = I, or in other words, if no projection is used, then this element will . '-

lock. The cause of locking can be understood by simply considering 3m; if the.-.-.

d (2.17c) .~ 2

Iu2~ -l 01 .021

6.7'

,.' . , " .., ,. ., - . .. . , ., , - . . .. .. ,.. , .. , ,., .- . . ,. .. ... .- ., - . ., - . . , • ,. . .. . .,. . -.. . . ,. ,
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4 1. , moment on an element is constant, then = "2' so if wo(x) 0, then the

constant term I/L cannot negate the terms w °(x)N ,x hence parasitic membrane

strains will arise. If w °(x) = 0, the beam is straight and no coupling exists

between flexural and membrane effects. This coupling is an important
:'p,1

attribute of curved elements.

The projection operator which eliminates locking is developed in

Stolarski, et al. (1984) to be

L o

i-0 o + L0 -o (0 4 €0) 
" '

.. 00 0 (2.18)

0 0 0

This projection is obtained by noting that the change in the chord length

b b b
u2 1 - 2 u1 IIn a pure bending mode is given by-7

Lo
U2 1  J -7U 1 ~2 1 1 22

- 0

As can be seen from Fig. 3, this change in chord length is required to

maintain an inextensible midline during bending of a curved element; if an

element is straight, no change in chord length occurs during bending.

An analogous approach has also been used to formulate a triangular shell

element in Stolarski, et al. (1984) which is here called DKT-CST*. In its

development, it is convenient to use only deformational degrees of freedom.

Following Argyris (1965), the membrane state of strain is expressed in terms

of the elongations of the 3 sides n, and the bending state represented by

deformation rotations , so that the deformational d.o.f. are

.*~df ." . " .
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II T nI , 12, n3 ] (2.20a)

P d I ¢y1' x ' y2' *x3' Oy3 (2.20b)

The strain energy of the element is then given by

U I +(n ) T KM (2.21)

, where Kb and K are the bending and membrane stiffnesses, respectively. On %

the element labeled DKT-CST*, in Section 6, the discrete Kirchhoff triangle

(DKT) eiement of Batoz (1982) is used for the bending stiffness and the

constant strain element is used for membrane stiffness. Note that in the

absence of -nb in (2.21), the bending and membrane behavior of the element are

totally uncoupled.

The bending elongation along each side is now given by the same equations

as for the beam, (2.19), but written in the form

nIb M 4 I +  L 1 21 i (2.22)

where I and 1 are the rotations relative to side I of the element and
.w ~0 0-.-..

0 11' are the initial slopes of the shell surface relative to the chord of

the element. From the relations (2.22) at the three sides, the projection

operator P is obtained.

Details of the element are given in Stolarski, et al. (1984). One

important aspect of the formulation which was inadvertently omitted from that

paper is that oi[ and *i in (2.22) must be defined so that the bending
i"i

.%
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elongations of the common edge of two contiguous elements are identical N

Otherwise, the projections for elements which are not coplanar will be
different, and as a consequence, parasitic membrane energy will appear in a

,%

state of pure bending. This is accomplished by defining oil as the rotation
,. . ' k

in the plane defined by side I and the normal to the shell at node i.

It can be seen from (2.22) that the bending part of the elongation

couples the membrane response with the rotations, and hence, as in the beam,

adds membrane/flexural coupling to the element.

N% ""

,

-. .,

,..-...-

:'. .- '.
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3. RELATION BETWEEN MIXED AND MODE-DECOMPOSITION PROJECTION METHODS

In this Section a simple form of the element stiffness matrix for mixed

methods will be developed and then compared to the explicit projection method

9' to illustrate their similar structure. The Hu-Washizu variational principle

will be used to develop the mixed method. This principle can be written for a

single element in the form

[ Seij (Dijkt 'kx "ij) -Lij(ij " u(i,j)J

n (3.1)..

+ u(i,j) 7ijd i il 

Ip.

Standard indiclal notation has been used, with repeated lower case subscripts

summed over their range; comas denote partial derivatives. Upper case

* subscripts pertain to degrees of freedom of the nN nodes. The nomenclature in

this section is As follows:

ij 'strain; matrix form E is considered a column

T
matrix such as T (x' e>y' 2exy)

stress matrix

ui  u = displacement field

,*dI , d - nodal displacements

u 7ij * Vu symmetric part of the gradient of the,"~ i'j)'

displacement field

D . stress-strain matrix,' ijk

In the above, both the subscripted tensor forms and the matrix forms commonly

used in fini:a element implementation are listed. Through the use of the

'.

.*

• - -imm m .. . .. m l.
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latter form, the relation of the projection method and Hu-Washizu can be

clarified more easily. The displacement field in this principle must be C

while the strain and stress fields may be C "

The three independent fields are approximated by interpolation functions

as follows
O .4 4,

nD
ui I Ni d1  or u = N d (3.2a)

nE
ei.= Eij1 e1  or e= (3.2b)

nE

Cj S e s or a S s (3.2c)

, ¢ij iji I ,.

where n D are the number of displacement d.o.f. and n E are the number of strain

(or stress) interpolants. An important part of this presentation Is the use

of mnemonic terms for the strain and stress interpolants and coefficients so

that they are easily recognized later. We also define the

standard B-matrix through

nD

u Bij d, or V u -B d (3.2d)u (i 'J ) i l~. --

Substituting the above into Eq. (3.1), and using the arbitrariness of the -

- appropriate variations yields:

4.4
'. 

-.4 *4*

I '

. , 4.y

.4.

- -- - --,.* ' 4 4 ,',¢- **-- ." ' *.* ' . .... ... i ,
" - ' ' - "

" -" ' - *" - " ". . " . . ' - -
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strain-displacement equations

SE11  ej B d or E. e B (3.3)
j=1 J=1

stress-strain equations

0u1j e j E Iis or 0e E s (3.4)

equilibrium 
'A

n E
f o f= s (3.5)

where

E1J = f I Eijj do (3.6a)

a =I f S1 ij iid (3.6b)

D~i f E~1 0 jk± EkxJ d"l(.c

At this point it is convenient to note that

E=FF E . . . El(3.7a)
- ~ ' 2' fnE]l

~nE1  (3.7b)

In terms of this notation, (3.6) can be rewritten as -
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E ' ST E dna (3.8a)

B B dfl (3.8b)
I Ji

D1 ffTD E dfl (3 .8c)
I

From this notation it becomes clear that the essential ingredients of the

mixed method, such as the B-matrix, are simply the projections of these

*matrices onto the corresponding stress and strain interpolants. The

a-matrix, for example, is projected onto the stress interpolants in this mixed

method.

A more revealing form of the mixed method can be obtained by

orthogonalizing the strain and stress interpolants so that

=~ f Sij Eij dO1 1 Ij or E 1(3.9)

*where I is the unit matrix. This can always be achieved by a Gram-Schmidt

*procedure if the stress and strain interpolants span the same space and are

linearly independent; it is also convenient if each strain (or stress)

parameter e, (or s1) pertains only to a single strain zj(or stress aij).

* Using (3.9), Eqs. (3.3 -5) can be written

e B d(3.10a)

s -De (3.10b)

'.e "

U,...

&':g.. r
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f =B' s 3 .10c)

which can easily be recognized as the strain - displacement, constitutive and

nodal-force stress (equilibrium) relations in projected form.

The element stiffness matrix is now obtained by combining (3.4-6), which

is most easily done with the matrix form, and gives

f *r(r 1  (E) d (3.11)

Using the orthogonality (3.9), (3.11) can then be written as Z %

8e DT B (3.12).: ;'

For purposes of comparison of the mixed method with the mode decomposition

projection method developed in Section 2, it is also worthwhile to write

(3.12) using the definition of DIj, (3.8c), which gives

K T T E d B (3.13)

Table 1 compares the above form with the mode decomposition projection

method. It can be seen that the two methods are identical in structure, with

the matrix P playing the role of the projection of A onto the stress

interpolant S, hence the name stress-projection.

In many elements, the same interpolation functions are used for the

stresses and strains. To establish the equivalence of the two methods, the

strain interpolants should be orthogonalized, and the matrix P plays the role

- of the projection of the B matrix onto the strain interpolant E.

-4- .*

-' 4. ' - " . " 4 " w . " . ° • .€ . , . - . , . - . . -. . . . .° .• - ,• .



%~. %*

e4.

29

Although the conditions for equivalence between mode decomposition V.'...

projection methods and mixed methods appears straightforward, establishing the

exact equivalence is not possible in some elements. Stolarski and Belytschko

(1985a) have shown an equivalence between mode decomposition projection

methods and mixed method.s for a large variety of beam elements, but in that

paper it was shown that no mixed element is equivalent to the t.riangular plate

element developed in Belytschko, et al. (1984c).

Remark. The equivalence of the two methods does not depend on the

orthogonality of the strain and stress interpolants; it only serves to clarify

the relationship. The stiffness matrix in fact is not changed by

orthogonalization of the interpolants.

Table i

Comparison of Mode Decomposition Projection and Mixed Methods

M'xed MethoJ Mode Decomposition
Projection Method " -.

(Orthogonal Int3rpolants)

Strains

See Eqs. (3.2b), (3.1Oa)

Stiffness Matrix

See Eq. (3.13) See Eq. (2.10a) (only shear stiffness)

-T T T T'
"e" fE DEd 2B Ke z s Bs Os Bs dez Ps

- '4ote interchangeability when B P E B
s --

, .P 

.r

1 2 ,

( 4 f ~ ~ d~.( A.~ C. ~ d J . p~ - * j.V".. ..V , .-. % -. . . .. . k. k
i. 'w ". -I."m " "- % • , s' ". '%,". % "W % " % • % % . " %. . "• "% ,.. % % ° % -.2°, ." %° -,° .%S. . .. • . o ,-.



30

4. NINE-NODE LAGRANGE SHELL ELEMENT

The 9-node shell element to be discussed here has been extensively .,.

studied by Parish (1979) and by Hughes and Liu (1981). It is a Mindlin type,

degenerated shell element which uses quadratic Lagrange interpolants. The 2x2

quadrature version of the 9-node element possesses the unique and beneficial-

property that in constant moment states, the transverse shear and membrane

stresses (that is, the parasitic stresses), vanish at the quadrature points.

Thus 2x2 quadrature provides a stress projection which should avoid locking.

This property can be verified by performing the numerical experiments

illustrated in Fig. 4. As indicated in the figure, both flat elements and

elements with a single curvature were'considered. In the numerical

experiment, moments were applied as shown and the transverse shear energy and

membrane energy was monitored. In all cases which were tried, the transverse

shear and membrane energies were less than 0.01% of the total strain energy.

The same behavior was observed when the quadrature points were shifted

from n = , 3 1/2 (the Gauss points) to n = Z = 11/2. However, the accuracy
Ii

of the element then deteriorates even though the membrane energy locking does

not occur; for an illustration of this see Table 2, which gives results for

* the arch problem described in Fig. lb. These runs were made with a beam

element because the shell develops a spurious mode for the 01/2 quadrature

scheme.

This feature of the 9-node element with 2x2 quadrature makes it a very

desirable element for the analysis of shells. Its highly convergent behavior

will be illustrated in Section 6. However, the element suffers from one

important drawback: its rank is not sufficient to preclude spurious singular

modes, so for some boundary conditions the total stiffness matrix is singular.

- -.,..
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Table 2

Effect of Quadrature Point Location on Accuracy for the Arch Problem

Number of Elements wE exact Um/U Us

Gauss quadrature * 3"'2

10 0.9861 0.0013 0.0031

20 0.9984 0.0013 0.0031

40 1.0009 0.0013 0.0031

Midpoint quadrature t = 1/2

10 1.0928 0.0016 0.8033

20 1.0257 0.0120 0.0041

40 1.0077 0.4199 0.0031

Um  membrane energy, Us = shear energy, U = total energy

w deflection under load

:--.:.

.9.4
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-The control of these spurious modes has been developed for the 9-node

plate element in Belytschko, et al. (1984), and the stabilization procedure

for the shell element has been reported without analysis in Belytschko, et al.

(1985). In Appendix A a description of the element as used here and a

detailed development of the stabilization operator is given.

Reduced Integration of the stiffness may also be viewed as a projection

method. This, of course, is suggested by the equivalence principle of Malkus

and Hughes (1978) which establishes the equivalence of reduced integration

displacement and reduced integration mixed methods; the relationship between

the latter and projection methods has already been discussed herein. Reduced

integration represents an implicit projection, in that the projection

operator is never explicitly invoked. An exact mixed formulation for the 9-

node (2x2) element is developed in Appendix B. In that development, by using

Dirac functions for the stresses, the reduced quadrature displacement ---

formulation can be shown to be equivalent to an exactly integrated mixed -

element.

,'J

.- ,-
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5. AN OBSTACLE COURSE FOR SHELL ELEMENTS a..

A major shortcoming which has impaired the development of shell elements .1

is that in the reports on many elements, they are not tested against a set of

problems which challenge even a fraction of the capabilities required in a

high-performance element. A good shell element must have the ability to

handle inextensional bending modes of deformation, rigid body motion without

straining, and complex membrane states of stress. Inadequacies in this

spectrum of attributes are a severe handicap.

A useful obstacle course for an element must also be reasonably short; it

is useless to include problems which only disqualify elements which are

already disqualified by other problems.

In this effort, we have assembled the three test problems show in Fig.

5. All of these problems have been seperately used by others in the

literature as noted in Table 3. We have found that together they are an

extremely discriminating set of problems.

Some remarks on this selection:

1. The Scordelis-Lo problem is extremely useful for determining the ability

of an element to accurately solve complex states of membrane strain. A

substantial part of the strain energy is membrane strain energy, so the

representation of inextensional modes is not crucial in this problem.

Even elements with severe membrane locking will converge at a moderate

rate in this test, whereas inadequacie: in membrane stress accuracy will

severely inhibit convergence.

2. The pinched cylinder with a diaphragm is one of the most severe tests for

both inextensional bending modes and complex membrane states. We have not

,." '.,

,.r'
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16.1

Hemispherical Shell

P
L12 I L12

Pinched Cylinder wYith

Diaphragm Scordelis-Lo Roof

Figure 5. Obstacle course for shell element
p.oft 'A
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included the pinched cylinder with free ends because any element that -

passes the diaphragm support test will perform well when the boundary A

condition is simplified to a free boundary.

3. The hemispherical shell problem is again a. challenging test of an

element's ability to represent inextensional modes; it exhibits almost no

membrane strains. The role of this test problem is less critical with

regard to inextensional bending than the pinched cylinder problem.

However, it is a very useful problem for checking the ability of the "

element to handle rigid body rotations about normals to the shells

surface. Large sections of this shell rotate almost as rigid bodies in

response to this load, so that the ability to accurately model rigid body

motion is essential for good performance in this problem. Some 5 d.o.f.

per node formulations of triangular elements fail this test because they

result in spurious straining when rotated about the normal to the shell

surface. This problem is much more challenging than the point-loaded

spherical problem which is often used.

Table 3

Problem Parameters for Obstacle Course

Problem 1. Scordelis - Lo Roof
length: L = 50.0
radius: R - 25.0
thickness: t a 0.25
Young's modulus: E - 4.32 * 108
Poisson's ratio: v = 0.0
boundary conditions: supported at each end by rigid

diaphragms
loading: uniform vertical gravity load of 90.0 per unit

area
converged numerical solution: vertical displacement at

midside of free edge = 0.3024
reference: Scordelis and Lo (1969), Ashwell (1975). *. ,

~ ~ V . -, ."
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Problem 2. Pinched Cylinder with Diaphragms
length: L = 600.0
radius: R - 300.0
thickness: t = 3.0
Young's modulus: E = 3.0 * 106
Poisson's ratio: v = 0.3
boundary conditions: constrained at each end by a

rigid diaphragm,u = u = = 0 in Fig. 5
loading: opposing radial foads as shown in Fig. 5,

F - 1.0
radial displacement at point load: 0.18248 * 10-4

references.; Lindberg, et al. (1969), Ovorkin and Bathe
(1984), Flugge (1973)

Problem 3. Hemispherical Shell _
radius: R = 10.0
thickness: t = 0.04
Young's modulus: E - 6.825 * 107

Poisson's ratio: v = 0.3
N. boundary condition: bottom circumferential edge of

hemisphere is free
. loading: opposing radial point loads alternating at 900*

as shown in Fig. 5, F = t2.0
solution: radial displacement at loaded points: 0.0924
references: Morley and Morris (1978), MacNeal and Harder

(1984)

Table 4

Comparison of Results for Hemispherical Shell (See Fig. 2)

with Consistent and Inconsistent Spurious Mode Control

(results given are ratio of computed to analytic displacement under load)

Mesh for Consistent Inconsistent 2x2 Quadrature
Quarter of Shell Control Control 1 = h ;=0

(number of given by Eq.{A.32)
nodes/edge)

3 1.319 1.2672

5 1.0794 1.0792 1.0954

9 1.0056 1.0063 1.0138

13 0.9963 0.9970 1.0037

17 0.9925 0.9958 0.9987

5Ad

-.. . -* .; 3 > _ _ _ __ _ _ _ __ _.__ _ _ __ _ _ _,__ _
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Remark 5.1. This selection of shell problems wa's inspired by the work of

MacNeal and Harder (1984), who devised a set of standard finite element

* problems which included hemispherical shell and the Scot-delis Lo roof, but not

the pinched cylinder. They also included various plane patch tests and plane,

two dimensional problems. .

ZeI
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6. RESULTS

Results have been obtained with two classes of elements: 3-node

triangular elements with 5 or 6 d.o.f. per node and CO Mindlin type shell

elements based on a degenerate shell theory of Hughes and Llu (1981). All of

the triangular elements utilize the discrete Kirchhoff triangle (DKT)

" formulation of Batoz et al. (1982) with different membrane strain fields.

They are as follows:

1. DKT - CST: a standard flat triangle with constant membrane strains and

no membrane/bending coupling.

2. DKT - CST*: a constant strain triangle is used for the membrane strain as

above but the membrane projection described in Section 2 and originally

reported by Stolarski et al. (1984), which couples membrane and bending,

is added.

3. DKT - LST: a 6 d. o. f. per node element in which a linear membrane field

with reduced integration as given by Carpenter et al. (1985) is employed

for the membrane effects. This element is flat and has no membrane-

flexural coupling.

4. DKT - Olson-Bearden: a linear field given by Olson and Bearden (1979) is

used for the membrane strains in combination with a DKT element. This

element has 6 d.o.f per node and no membrane flexural coupling.

Among the Mindlin CO elements, the following were used:

1. 4-node SRI: this is a standard 4-node Mindlin element described by Hughes

and Liu (1981) with selective reduced integration, consisting of reduced
,- ,....

integration on shear (1 point) and 2x2 quadrature on the bending and

membrane terms.

.J-
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2. 9-node SRI: the 9-node Lagrange element with 3x3 quadrature on all -16

bending and membrane terms and 2x2 quadrature on the shear terms.

3. 9-node 3x3: full quadrature (3x3) on all stiffness terms of the 9-node

element.

4. 9-node y-method: 2x2 quadrature on all terms of the element stiffness

with y-stabilization, as described in Appendix A.

Scordelis-Lo roof. Results for this problem shown in Fig. 6. These are

observations of element performance for this problem:

1. The DKT-CST and DKT-CST* are both very poor for this problem, whereas for

the other problems in this obstacle course they perform very well.

2. Among the triangles, only the Olson-Bearden and DKT-LST elements perform

reasonably.

3. The 9-node y-element and the 4-node SRI elements perform extremely well on

this problem. However, when a selective reduced integration is used in

this element, the results hardly differ from full integration. This is

very puzzling, since the problem is dominated by membrane response rather

than bending, so the severe locking of 9-node SRI element is quite

unexpected. In fact, there seems to be considerable membrane locking in

the coarse meshes, but it is quickly eliminated with mesh refinement.

Pinched cylinder with diaphragm. Results for this problem are given in

Fig. 7. In this problem, all of the triangular elements work reasonably well,

with only the DKT-CST being marginal. On the other hand, the performance of i..,

* all of the Mindlin elements, except the 9-node y-element, are quite poor.

Particularly noteworthy is the fact that even with 17 nodes along each edge,

the 4-node SRI element is still 5% in error and converging very slowly. This

is the only problem in this set in which the 4-node element performs below

...................... ,---
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*-4.-p,

par. No improvement is achieved in the 4-node element by using 1-point

quadrature on all terms, see Liu et al. (1985).

In order to illustrate the relative magnitudes of shear and membrane .,.,.

locking, Fig. 8 shows the results obtained for the 9-node element for SRI,

2x2, and 3x3 quadrature. It can be seen that for coarse meshes, membrane

locking is dominant whereas for the finest meshes, shear locking becomes more

important. * .

Figure 9 clarifies the role of membrane and shear locking by showing the

fractions of the total energy which are shear and membrane energies for

various meshes of 9 and 4-node elements. As can be seen, for all of the

elements, the shear energy tends to almost zero as the meshes are refined, but

the rate of convergence of the shear energy for the 9-node 3x3 element is

quite slow. The membrane energy fraction of the y-element tends to

approximately 0.373. For the 4-node SRI element the membrane energy is

somewhat larger for all of the meshes considered.

For the 9-node 3x3.element, the membrane energy is overpredicted even for I-p

the most refined mesh, which is indicative of membrane locking. The initial Z.

increase of the membrane-energy fraction, which is apparent in Fig. 9, is

somewhat puzzling. Evidently for the coarse meshes, the total internal energy

is very small because of severe locking; the initial refinement of the mesh in

this element serves primarily to reduce shear locking, so that parasitic
'.,.5-,..."

membrane energy actually increases at first.

'Spherical shell problem. The results for the spherical shell are shown in 1'

Fig. 10. The following points are noteworthy:

1. This is the only problem in which the Olson-Bearden element performs

poorly.
% --

"'

,-.5-

+4 "5.5.-
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2Pinched Cylinder with Diaphragm

9 ~node SRI

-- 9 node 3x3

--1- 9 node Wx

N ~seabru locldng\

0
ka0 3 8 9 12 15 15

Number of Nodes /Side

.

Figure 8. Relative effects of shear and membrane locking in pinched
cylinder with diaphragm.

S E~%



45

0 4 0 0 PIZ

C3 i M f 0 z

tw M

0z 0 w

I'lla

0

ea.
a -2



46 -~ -. .-

V-46

to E7=*'*

00

CC/

o

0

oDV

-C z

oro



47

2. The other triangular elements 'perform extremely well in this problem,

whereas the fully integrated CO elements (4-node and 9-node) all exhibit

severe membrane locking. Shear locking is almost totally absent.

Remark 6.1: Noor and Peters (1981) have shown similarly stiff behavior of

displacement elements for curved beams. Interesting results have also been

given by Ramm and Stegmuller (1982) who found that for the 16 node Lagrange

with 4x4 quadrature, the buckling value of a cylindrical panel converged only

to within 2% of the solution with a 12x12 element (37x37 nodes, 6900 d.o.f.)

mesh; they did not report their curved 9-node element results because they

were so poor.

Summary of performance. As can be seen, this obstacle course includes

problems which compromise the performance of every element except the 9-

node y-element and the DKT-LST. The DKT-LST unfortunately suffers the

drawback that it does not have a variational basis. The 4-node SRI element is

the next best among these elements, although it exhibits some locking in the .

pinched cylinder/diaphragm problem.

A confusing result. The senior author has devoted considerable care to the

development of methods for controlling spurious modes which are consistent in

the sense that the strains for linear displacement fields and rigid body

motions are evaluated exactly, which accounts for the terms in addition to

in the X projection vector, see Appendix A. However, very good convergence

can be obtained in many cases when the additional terms are omitted. Table 3

compares the results for a consistent and inconsistent method of spurious mode

control in the hemispherical shell problem; the inconsistent method, in fact,

converges faster. The major flaw we have detected in inconsistent methods of

stabilization is that it can lead to erroneous stresses in unusually shaped

elements where the terms hTx and ar
ndh~ e large.

...................................
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h

Remark 6.2:. The 9-node element solutions which are reported here for the

pinched cylinder with diaphragm could be obtained by simply using 2x2

quadrature. When the assembled stiffness matrix obtained with 2 x 2

quadrature is not singular, the y-method results are almost identical to the

results obtained by 2x2 quadrature.

.

.
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APPENDIX A

The main purpose of this Appendix is to provide details of the 9-node

shell element with 2x2 quadrature and the stabilization of the spurious modes

by the y-method. Stabilization procedures of this type were developed for the

4-node plate by Belytschko and Tsay (1983). Results with this

y-element have been reported in Belytschko et al. (1985a) but the consistency

of this operator for curved shells was not examined there; formal consistency

is equivalent to satisfying the patch test, see Belytschko, et al. (1984a).

It will be seen here that once the X-meLhod is applied to curved elements,

certain losses of consistency result, and the stabilization can best be called

quasi-consistent. The effect of this is not :lear, but as can be seen from

the results presented in Section 6 no deleterious effects have been noted.

This evidence is however not conclusive since even inconsistent control can

perform well, see Table 4.

The degenerated shell element is developed in a manner that closely

follows Hughes and Liu (1981). Attention is restricted to the 9-node

element. The physical domain of the shell is described by an isoparametric

transformation from a reference cube described by coordinates n, c through

9
xi  *i+( , n, C) xil+ + 4i .( , C) xil. (A.1)

where xi, + and xi," are the coordinates of the continuum nodes associated with

shell node I and x. are the Cartesian coordinates in the physical space; see

Fig. Al. As can be seer. from Fig. Al, the nodes labeled I- are below the

corresponding shell node I (; < 0) while those labeled I+ above the shell node

I 0 ).

4o-.

* * .. .* ** .- * * - - '- * . - % -'% °
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*The shape functions p1 are constructed from the two-dimensional Lagrange .'

interpolant NI by

= N+() NI(E. ni) (A.2a)

*I- N_(C) NI( , n) (A.2b)

N+() = ( + ) (A.2c)

N W (1 C) (A.2d).

NI(&, n) = W) K(n) I= 3(J -1) + K (A.2e)

)= { - i)(A.3b) - I
1 ' (A.3c)

The midsurface of the shell is given by (A.1) with = O, which by means of

(A.1-2) can be written

xi = Z x N1 ({, n) (A.4a)

where

S.al
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+P

X j 2Aii + i + (A.4b)

The stiffness matrix will be integrated numerically and the points at

which the integrand is to be evaluated are called quadrature points. At each

quadrature point, a local Cartesian coordinate system (x, y, z) is constructed

so that the x, y plane is tangent to the midsurface defined by (A.4a) and the

z coordinate is perpendicular to this plane. If large rotations of the shell

are to be treated, this coordinate system can be considered corotational in

the sense used by Belytschko and Hsieh (1973) and Belytschko and Marchertas

(1974), but this is not of major concern here.

The strain-displacement equations at each quadrature point can be written

as

e = C O + Z PC for a 1, 2, 6 = 1, 2 (A.5)

I (au z + au for
az -  -  for a 1,2 (A.6), ~a;, axz .... i

a Z
% #'~..°.

where

* A 3ux (A.7a)

x

.0 ax
-u (A.7b)

Y
" ay -

%, S. ,

"I .=%.

S.o -°

,', . , . ", " .' ,' " "" .," . ;•"• '-.," ... ..- , .,,,. .I '''". _'.-," ." , ,, ." . , . ,","-"" '"1 V " -,i.]-.
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;oxy (A.7c)
xy x

ay ax j

a e
K(A.8a)

RB~x. *..

aex
y - (A.8b)Y ay Y---

y ae 2e (A.8c)
xy B x,,

ay ax

The strain matrix is defined by

.T =. , ZO, 2i x' ^ 2)cy , j (A.9)x , , y xy 1Z' yz
... ,..

and the B matrix at a quadrature point a gives the strains through

T 9,,. = ~-- Z ~ x ) I(A.10) h '

;T U(A.11b)

.. It should be stressed that the superposed circumflex in the above equations

q " indicates that all components of e and d are expressed in the corotational -

coordinate system of point a when evaluating the strain at point a. .-2

.". .. '. .. .

a " .t " - " : : 1 " . ' ; " - : ' . ' : ' . - . ' " " . 1 : . - . " " - : . : L : ' " . 1 L ' ' : 7 ' : ' - 1 " - . : . , 1 1 : ? . : . - 
" - ' - 1 1 . ' . ' . ' . - . ' . " . " -. : : .,,. _.." ". .._.,. .-... ,- .._ .. _.-. . :-_ .. .. ... -.. ... ..._... _.. .. . ,. ., .. ... .. ....' _.- . _ .. . . . . ..
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For implementation purposes, a transformation R is defined at each

quadrature point so that

, R (A.12)

so that

9* 9

1= 1 I - .-1.

where R, is the transformation between the local coordinate system of

quadrature point a and the coordinate system of node I. If 5 d.o.f. are used

per node, the transformation between a and each node of the shell will be

different for a curved element; 5 d.o.f. per node is necessary if singular

systems are to be avoided.
.4,

The B matrix is given by the component matrices

Em1 C013x3 "'

= b]I (A.14)

0'3 5x3  ECis] I  "-

-. EO]5X3 LB5]

m i aN lay (A.15) At

L 3Nia YN/ax.'

4.;':

,4 %
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0 0 3N /ax 1
[Bb]I 0 - aNI/ay 0 (A.16)

0 aN /a aN/ay

- ~ N 1 /a- j
L I I

aNl/aX 0 N"
CB s1 = (A.17)

3N - N.0

In uniform reduced quadrature, the element stiffness is given by

44

Ke : Z(R") T jT (x) R(x ) (x )R:l J(x )(.8 .-.

where 0 is the material matrix and J the Jacobian of the mapping between the -

reference and physical volumes.

'I

Control of Spurious Modes for Plate Bending

The control of spurious modes for the 9 node plate CO element has been

described by Belytschko, et al. (1984b). However, the method described there

is not readily applicable to the curved shell element.

In order to describe the spurious modes and their control, it is

convenient to define row vectors bi, the elements of which are given by
'4 '. -. ',

b b : aN (x)/ax (A.19a)

'.. .al 1

!
I I ,  

- , -4,

-4111

_%..., 
.- Z '

.4 I 
1  1 I "I "I 1 i ' q 

I 
-II 1 1 " I l l I I l i 

"  I I iII IIiiI- ' - ' ~ i 1.- l I i
-_,,,_.'44 r % 

' . > , 'I ' ',' Z > - ,. _ 'J
.- ,.,.6 v.L.-'- _, L.. ',', ,'.'- .- '...' . '-._', ,,' '.'Z_ . . '
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b2 I  b yi = N (4 /ay (A.19b)

and the vectors s and h given by _

h [+i, -1, +, -1, 0, -1, +1, -i, +11 (A.21)

"*'.% 'N

A single coordinate system is used at all quadrature points of the plate

element so x is coincident with x, y with y. It can be shown that if the

quadrature points are x., which in the reference plane are given by the four

combinations of the coordinates, n = * 3- '2 then

b X.=. (A-.22)

Sh 0 (A.23)

s 0 (A.24)

N h N(x ) h 1 (A.25)

N s N(x) s =1 (A.26)

where N is the row matrix of shape functions, ij is the Kronecker delta,

xj are the vectors of nodal coordinates of the element. Using (A.22-26), it

can easily be verified that the first 3 modes listed in Table Al are spurious

-,- *% .%'

Vn

%.%-~~~~.;v%~W Q or--~--*..* a'~ k -'f .
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singular modes of the plate element, which means that

B(X)d=0 (A.27a)

and

Bs(x) * 0 (A.27b)

for these nodal displacements which are not rigid body modes. Note that

I= for a plate, and that (A.25-26) are essential in establishing (A.27b).

The control of the spurious modes then consists of defining a projection

operator x which does not destroy the original consistency of the B matrix, as

exhibited by (A.22). Following Belytschko, et al. (1984), the vector x is
9expanded in a complete representation of the vector space R through

-

Table Al

Six Spurious Modes of the 9-Node Element

Mode ux u uz  x I 2z

1 2 0 h 0 0Q

2 0 0 02 ~ 43h 0 03 0 0o s + 3,-.0

4 h 0 0 2 0 0

5 0 h1 0 0 0 0+3
6 0 0 0 o s + 3h P,%

J,. *J'

-p.' "'
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44

C. = (a,. b +a a + ag a10  (A.28)
2a~. *2a

Ten vectors are needed because b., are not all linearly independent. Linear

consistency then requires that

T~o +c1  + c2  =0 for all c~ (A.29a)

Substituting (A.28) into (A.29a) and using (A.22-24) yields

4-

4.

c1 ~a9 ,~ ,~ 10 - -GT

4 (ag + a 0  ~+ a =0

Since the above must hold for all ci, it follows that a 0 = 0 and only 2

conditions need be satisfied by a a Thus a large variety of options are

available in the consistent control of the spurious modes. In Belytschko, et '

4..'al. (1984), it was chosen to let

a = 1 .ahT x a 1 a T1 to 4 (A.30)

However, this approach is not adaptable to the shell problem, as will become_

.7, clear shortly. -

The approach that is therefore taken is to define a projection

operator X, at each quadrature point. Equation (A.29) must hold for each

and thiis is accomplished by letting

LI e
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0 i fai, T(A.31)

9 if .. :

Hence

x(hX) bx (h ) by (A.32)

The common constant a9 has been omitted.

In this scheme, 12 generalized strains (in contrast to 3 in the original

scheme) are then defined by

(w) T

q(¢) T
xW is 6x = 1 to 4 (A.33)

q(0) T

where s identifies the quadrature point.
A..

Spurious Mode Control for 9 Node Shell The six modes which are to be

controlled are listed in Table Al. The form of a spurious mode projection has

been presented in Belytschko, et al. (1985) but a careful examination of its

consistency and limitations is still not available. We will attempt to

partially remedy these shortcomings here.

The issues of consistency (and the related issues of patch tests) for

shells still appear unresolved. While the requirement that an element be

&Z-
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strain-free in rigid body motion is quite clear, the additional consistency

requirements associated with linear fields are more difficult to formulate in

a curved element.

For this reason, we have taken advantage of the relationship between the

shell and continuum elements (see Fig. Al) to develop as consistent an

operator as possible. As in the new plate version of the spurious mode

projection just described, the projection operator is defined at each

_e quadrature point a, and denoted by X Consistency then requires that

3 :
Z' (co  + c. xj) = 0 for all cj (A.34)

where

U a9 h + ax. bx + ay ;ya (A.35)

Note that we have immediately dropped the. matrices associated with

quadrature points other than a, as in Eq. (A.31), and a 0 , which must

obviously vanish as before. Furthermore, in contrast to (A.29), consistency

is now required with respect to fields linear in z (that is x3).

We now define

a* (x) "'"to9
i I 1 to 3 (A.36)

ax1
-%. is r oe hp y

that s ii are the derivatives of the continuum node shape functions. By

consistency of the original continuum shape functions

P- . * - r . - . . . .
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-T X x B i j I ito 3

Q (B~iL+ Xj 1 + iaI- i) j

(A.37)

where the sum is over the continuum nodes and r. = -(x.) which are the

511-"''

coordinates of the continuum nodes.

Using (A.2) , it can be seen that

(&,n,O) aN ~ 3N 3N
N + N- for i -1, 2 (A.38)

A similar expression applies to the nodes below the niidplane, I-. It has been

assumed that is normal to the (x, y) plane so that aN+/axi 0. Since this

cannot hold exactly the approximate equality is used in (A.38).

Using (A.38) and (A.4b), it follows that for i 1, 2; j Ito 3

;T 9 a 1

-il a (xj I

(A.39)

I - .-. " -p.-

9 3N

1=1 ax~

Hence using (A.19), (A.37) and (A.39)

i a xifor I 1 1, 2 j o 1 to 3 (A.40)

Employing (A.34-35) with (A.40), it follows that the requirements for

consistency are

Ianthl xcl h prxmteeult sue n(.8.7:

Usn A3)ad(.b i olw-htfri= ;j=It ..
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hT + a o0 (A.41a)

h j+ a, =0 (A.41b)

hT z=0 (A.41c)

Equations (A.41a-b) can be satisfied exactly as in the development of the flat

plate operator, (A.32), so that the projection operator at each point becomes

X- (bT y (A.42)

However, (A.41c) cannot be satisfied and there is no latitude with which to

attack it, so that the method as described here must violate consistency

4..whenever h T 0.

The control of the spurious modes is then accomplished by defining 5

additional generalized strains at each of the four laminar quadrature points

through

4,(gw) = T

(w) T - (A.43)

W

=1 1, 2

The first two generalized strains control the spurious membrane modes, the

next three control the bending modes.
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The stiffness matrix of the element is then given by adding the effects

of the stabilization to K see (A.18), which gives

T ( jT( xa)  ,().' .?,
Ke  (Ra)T () (x) x + T) R (A. 44)

-.. 4

wiere J is the Jacobian and ra is a diagonal matrix consisting of

blocks ra given by

rm YI

rm Y.I zeroes

ZI r w Yal
zeroes r8  aI

re YY ai .
r8 YaI

(A .45) ... ..

....

It has been shown by Belytschko, et al. (1984) via the Hu-Washizu .4

principle that the y-method stabilization is equivalenc to recovering that

portion of the diagonal terms of the stiffness matrix which has been lost by

reduced quadrature. Specific equations for the r-parameters have been given

by Belytschko, et al. (1985a). One important observation on the choice of the

r-parameters is that while r8 and rm can be chosen so that the fully

integrated stiffness is recovered, r must be scaled down to about 0.1;w
otherwise, the element locks.

. . .
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APPENDIX B

AN EQUIVALENT MIXED ELEMENT

We show here a construction of the strain and stress fields such that the

resulting 9-node mixed element is formally equivalent to the 9-node 2x2

quadrature displacement element. The demonstration is limited to the membrane

portion of the 9-node element, but it can easily be extended to the complete

shell element. The demonstration is the spirit of the Malkus-Hughes (1978)

equivalence theorem but offers the interesting feature that by using Dirac

functions for the stress interpolants, the demonstration provides an

equivalence with the exactly integrated mixed element. We assume that the

material properties of the element are constant. -

The essential ingredient in the demonstration of the equivalence is the

construction of the interpolation functions for the strains and stresses which

*, are used in the Hu-Washizu functional. For conceptual simplicity, it is

important to choose the functions so that the orthogonality condition (3.8) is

met. This is accomplished as follows.

The element is subdivided into 4 subdomains a1 to 24 so that aI contains

integration point xI and no two subdomains aI overlap, i.e. QI r J = 0 if

I * J; see Fig. B1 for the subdivision.

We then define Heaviside functions by

I if x is in a
HI (x) ( B .1) :-",

0(if x is not in n "-N

A. *

5'.i.-

' . ., ~ -' 5.,.
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The Dirac delta function is denoted by (x - Note that .e *S

f HI(x) (x - xj)dQ = Ili (B.2)

where II are the components of the unit matrix I.

The strains and stresses are now interpolated as follows (see Fig. B1 for

an illustration of the shape functions)

- ." el 7_ _

£2
1e (B.3)

y , 3xy . 4

5r'.

,-2

(B.4)

where

' "

H 0 0

E H0 1 0 H 0 (8.5)

L 0 H I
1

.5Ws

4-.

* -1 *5****,.**~; '--*---** *.** '%*,~;.5~ -
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I0 0

d(x - 0l)13x3 0 (B.6)

Let

e I  = S (B.7a)
4'..%

4YI

e s

" e~xy l I Xy I- ,

e. -2 -2

e S 5 (B.7b)-3 -3

It is easily verified from (3.8a) and (B.2) that

.- ,'' -- -.

'Sj E ZS E da2= I. I ;;j I_(3x3)

(B.8)

or = '(12x12)

From (3.8b) and (B.6) it follows that

S..°'.

or ' .- I(12'1-2WK-..-c--
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8(x).,-.

~ ~ B ~B(x) (B.9)

_B (x4) , .;Br
L

from (3.6c) and (B.5) that

AID 0 0 0 L"

A20 0 0

22 2
symmetric A3D A4 ---"""1

where AI are the areas of the subdomains a P

From (3.12), (B.9) and (8.10) it follows that

4.4

A B(x) (xi) (B.11)

which is analogous to the form of the numerically integrated displacement

stiffness except that AI replaces the determinant of the Jacobian

JI J(!,); see (A.18). Note that the weights for 2x2 Gauss quadrature are

all unity. However, the completion of the proof requires that it be shown

that a can be constructed so that J - A
1.,v..

To show that for an arbitrary isoparametric quadratic Lagrange element

the partition of a into i such that A1  JI is possible, we observe that

X, X ,l.. ;
J(, n) = det (B.12a)

NI yn j.-, . ,
Y ' Y n ';'..
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is a cubic function of both { and n. Thus 2x2 quadrature evaluates the area

of the element exactly
IV

11i 4
A = 1 J( (, n) dE dn = J (B.12b) P..

-I -1 1=i1

The above equation indicates that letting AI = we have Z A1 = A The
we .I

partition of a into four such nonoverlapping i should be possible, since the

only restriction is that each integration point xI falls within

It is also of interest to write the intermediate equations, namely, the

counterparts of (3.10). Using (B.7-10) these can be written as

Ae BQ d (B.13a)

n E

Sonly modified by the areas (Jacobians).--

An almost equivalent mixed method can be constructed by letting

. .~~d V C."

Thny moJ:iZf:ed . .with the k g by
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Ej = AI 3x3 (B.15)

and (B.9) is then replaced by

f' 2

B(3 (B.16)3)q

L (4),

where by the mean value theorem, x, is some point in I, (usually not the Gauss

quadrature point). Equations analogous to (8.11) and (8.13) can be developed

for this construction.

It is not clear whether this construction falls within the scope of the

convergence proof given by Oden and Reddy (1974). However, the uc of Dirac

delta functions makes this method a hybrid of collocation and Galerkin

methods, for which convergence theory should be feasible.
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APPENDIX C " "d.'

.' i

C.1 Impulsively Loaded Cylindrical Panel

This problem is defined in Fig. C.1 and Table C.2. The Ends of the panel

are simply-supported, while the side boundaries are fixed. Both material and

geometric nonlinearities were considered. The load was applied by prescribing

the initial velocity given in Fig. C.2 to the nodes in the region loaded by

the explosive. Figure C.3 shows an undeformed and deformed mesh. Table C.2

compares the results obtained for various meshes to an experimental result.

It can be seen that convergence to the experimental value is relatively

slow. The reason for this however, is not the accuracy of the element, but

- tne extreme localization of deformation which occurs due to the formation of

plastic hinges.

C.2 Collapse of a Hollow Column

Figure C.4 shows the simulation of a hollow column loaded axially. The

time history of the load and material and geometric properties may be found in

Fig. 3 and Table 1 of Kennedy and Belytschko (1982) where results obtained

with a 4-node quadrilateral element using one-point quadrature and hourglass

control are also given. The results obtained with this element compare well

with those obtained for the quadrilateral, except the model is somewhat

stiffer. Note the severe change n cross-section which accompanies buckling.

..
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TABLE C.1

Material and Geometric Constants for Impulsively .

Loaded Cylindrical Panel

Young's modulus E = 10.5 x 106

Density p = 2.5 x 104 lb-sec 2/in4

Poisson's ratio v = 0.33

Yield stress a 44000. psi

Plastic modulus E - 0. psi

Impulse over R, 5650 in/sec

-4 ~.'-' *
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TABLE C.2

Final Displacements of the Cylindrical Panel

for Various Meshes with Ilyushin Yield Condition

Mesh Displacement Displacement CPU time
Half-panel at y = 6.28 at y = 9.42 IBM 3033

6 x 16 0.917 0.401 83

8 x 16 1.043 0.448 138 .

10 x 20 1.081 0.462 162

-. 12 x 24 1.124 0.473 291

16 x 32 1.183 0.530 670

experimental [48] 1.28 0.70
.d.
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